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Abstract—High-dimensional data in many applications can be
considered as samples drawn from a union of multiple low-
dimensional manifolds. Assigning data points into their own
manifolds is referred to manifold clustering. Inspired by recent
advances in subspace clustering, in this paper, we present an
efficient approach for manifold clustering, called Local Convex
Representation (LCR), in which each data point is represented as
a convex combination of other points in the local neighborhood
and under some mild conditions the nonzero coefficients are
guaranteed to correspond to the data points lying on the
same manifold. Moreover, we incorporate the estimated intrinsic
dimension of the manifold to prune the minor nonzero coefficients
and validate that the pruning step helps LCR yield remarkable
improvements. Experiments on synthetic data as well as real
world data demonstrate promising performance.

Index Terms—manifold clustering, convex combination, intrin-
sic dimension

I. INTRODUCTION

In many real-world applications such as image and video
processing, we need to deal with a large amount of high-
dimensional data. Such data can often be well approximated
by a union of multiple low-dimensional manifolds, where each
manifold corresponds to a class or a category. In such cases,
it is important to segment the data into multiple groups where
each group contains data points from the same manifold. This
problem is known as manifold clustering [1] and has been
successfully applied to various computer vision tasks over the
past few years [2]–[4]. Formally, manifold clustering1 refers to
the problem as follows: Let X ∈ RD×N be a real-valued data
matrix, consisting of column vectors drawn from a union of n
smooth submanifolds of RD,

⋃n
`=1 {M(`)}, of dimension d`,

for ` = 1, ..., n. The goal of manifold clustering is to segment
the columns of X into their corresponding submanifolds.
Subspace Clustering. When data lie in multiple flat mani-
folds, this is a problem called subspace clustering [5]. Over
the past decade, a number of approaches to subspace clustering
have been proposed [6]–[10]. Among them, methods based
on spectral clustering [11] have become extremely popular.
Such methods consist of two steps: a) learning an affinity
matrix from the data and then b) applying spectral clustering
to this affinity matrix. State-of-the-art subspace clustering
methods construct an affinity matrix based on self-expression
model [6], which states that each data point xj is expressed
as a linear combination of all other data points, i.e., xj =

1Strictly speaking, we should term it as submanifold clustering.

∑
i 6=j cijxi + ej , where the coefficients cij are used to induce

the affinity between points i and j via aij = 1
2 (|cij | + |cji|)

and ej tolerates the errors. To find the solution cj of subspace-
preserving property [5], i.e., the nonzero coefficients of cj
correspond only to data points from the same subspace as xj ,
a proper regularizer is usually imposed on cj . For example,
in [6], the `1 norm as a convex surrogate over the `0 norm is
used to promote sparse solution of cj ; in [12], a mixture of
`1 and `2 norms are used to gain a balance between connec-
tivity and correctness; in [9], a scalable algorithm for elastic
net based subspace clustering with theoretical guarantees is
provided; and in [7], self-expression model is conducted im-
plicitly in feature space to cope with the nonlinear subspaces.
These algorithms, however, take advantage of the global linear
relations among data points which might not be suitable for
clustering nonlinear manifolds.
Manifold Clustering. When data lie in multiple highly nonlin-
ear manifolds, the aforementioned algorithms have no longer
their advantages. The existing approaches to cluster nonlinear
manifolds can be divided into two categories: the global
methods and the local methods. The global methods assume
that the manifolds have different intrinsic dimensions and
thus the data can be clustered according to the dimensions
rather than the manifolds themselves [13]–[16]. However, in
many real-world problems this assumption is often violated
because different manifolds might still share the same intrinsic
dimension. The local methods usually construct a pairwise
affinity to depict the local geometry and then apply spectral
clustering. Different methods differ in the way to exploit the
local geometry in the data. For example, local proximity is
used in Laplacian Eigenmaps [17], [18], local linearity is used
in [19]–[24], curvature information is used in [25], principal
angle information is investigated in [26], sparse representation
is explored in [27]. Among them, local self-expression model
based methods have received the most attention owning to
their elegance and effectiveness, e.g., the local linearity based
methods [23] and the weighted sparse representation based
method [27]. However, there is either tradeoff parameters to
tune or a lack of theoretical justification.
Paper Contributions. Inspired by recent work [28], we pro-
pose to induce the affinity for manifold clustering by Local
Convex Representation (LCR), which is easier to compute
and can guarantee that the nonzero coefficients relate to the
data points from the same manifold under mild conditions.



Moreover, we incorporate the estimated intrinsic dimension
to prune the minor coefficients in LCR and validate that the
pruning step helps LCR to yield superior clustering accuracy.

II. OUR PROPOSED APPROACH

Assume that a collection of N data points {xi|xi ∈
RD, i = 1, ..., N} are uniformly and sufficiently sampled from
n locally separable smooth submanifolds which are embedded
in D-dimensional Euclidean space RD.
Local Convex Representation. Consider a data point xj

which lies in submanifoldM(`), and denote the indexes of the
k nearest neighbors of xj asN (xj) ⊂ {1, ..., N}. Assume that
the submanifold is locally flat. Then, finding the affine sparse
representation of xj with respect to the k nearest neighbors is
solving the following problem:

min
cj

‖cj‖1 s.t. xj =
∑

i∈N (xj)

cijxi,
∑

i∈N (xj)

cij = 1, (1)

where cij = 0 for i /∈ N (xj). If xj lies in the relative interior
of the convex hull of data points {xi, i ∈ N (xj)}, the optimal
solution must be nonnegative [28]. Thus, for xj lying in the
relative interior, problem (1) is equivalent to finding a convex
representation as follows:

min
{cij}
‖cj‖1 s.t. xj =

∑
i∈N (xj)

cijxi,
∑

i∈N (xj)

cij = 1, cij ≥ 0. (2)

For the k neighboring points, we arrange the data points from
submanifold M(`) as the columns of matrix X

(`)
j , and the

data points from other submanifolds as the columns of matrix
X

(−`)
j . If xj lies in the relative interior of the convex hull of

the columns in X(`)
j and the affine hull of the columns in X(`)

j

does not intersect the convex hull of X(−`)
j then, as established

in [28] (see Theorem IV.2), the nonzero coefficients in the
optimal solution of problem (2) relate only to data points from
M(`) (i.e., the columns in X(`)

j ).
To tolerate some deviations in the local neighborhood, we

relax (2) as follows:

min
{cij}
‖cj‖1+

λ

2
‖xj−

∑
i∈N (xj)

cijxi‖22 s.t.
∑

i∈N (xj)

cij = 1, cij ≥ 0, (3)

where λ > 0. Because of the non-negativity constraint,
we reformulate problem (3) into an equivalent form without
tradeoff parameter λ as follows:

min
{cij}
‖xj −

∑
i∈N (xj)

cijxi‖22 s.t.
∑

i∈N (xj)

cij = 1, cij ≥ 0. (4)

We call the optimal solution in problem (4) as Local Convex
Representation (LCR). While problem (4) is the subproblem in
convex LLE [20], we see from the derivation above, for those
relative interior points, (4) is effectively an `1-minimization
with nonnegative affine constraint. Thus, as an analogue to
[28], we can also establish that, the nonzero coefficients in
the optimal solution of (4) for the relative interior points are
able to detect which points belong to the same submanifold
under mild conditions.

(a) Two rings (b) Two trefoil-knots

Fig. 1. Toy data illustration.

Estimate Intrinsic Dimension to Prune Minor Coefficients.
Since that problem (4) has no thresholding effect on the
minor coefficients, we adopt the intrinsic dimension as the cue
information to prune those minor coefficients. While the in-
trinsic dimension can be estimated by different methods [29]–
[33], we use the most classical method— local PCA [29],
which examines the eigenvalue spectra of the local covariance
matrices, i.e., performing a local PCA in the neighborhood of
each data point. To be specific, the first step in the process
is to calculate the local PCA for each data point. Then, we
take an average of the eigenvalues on the entire data set, and
estimate the intrinsic dimension by the number of eigenvalues
obtained when 95% energy is retained.

Once the intrinsic dimension d̂ is estimated, as in [34],
we keep the d̂ + 1 largest nonnegative coefficients and set
those minor coefficients to zero. By doing so, we preserve
only the connections from d̂ + 1 neighbors—which are in
high probability from the same submanifold. The comparison
between the performance with or without the pruning step is
given in experiments.

For clarity, we summarize our proposed approach as fol-
lowing three steps:
• For data point xj , find its k nearest neighbors and

compute the local convex representation for xj via (2).
• Estimate the intrinsic dimension d̂ via local PCA and

keep the leading d̂+ 1 coefficients.
• Induce the affinity via aij = 1

2 (cij + cji) and apply
spectral clustering.

III. EXPERIMENTS

In this section, we evaluate the proposed approach on
synthetic and real data to validate its effectiveness.

A. Experiments on Synthetic Data

We consider two rings embedded in R3 (see Fig. 1(a)),
where the two manifolds are close to each other. From
Fig. 1(a), we observe that the two rings are very close to each
other on one side. We perform LLMC [23], SMCE [27], and
LCR, respectively. Experiments show that the number of the
misclassified points is 9, 0, and 0, respectively, when using
k = 5. Furthermore, we find the data point (i.e., no. 55, at
where the two rings are closet to each other) and its 5 nearest
neighbors (i.e., no. 54, 56 on the red ring, and 126, 127, and
128 at the blue ring), and list the reconstruction coefficients
computed by LLMC, SMCE, and LCR, respectively, in Table I.
We can see that both SMCE and LCR yield the reasonably
good results; whereas LLMC does not. Nevertheless, while
the nonzero coefficients of LCR are not perfect compared to



SMCE, the first two dominating coefficients correctly relate to
the submanifold to which the data point (i.e., no.55) belongs.

TABLE I
COMPARISON ON COEFFICIENTS COMPUTED BY DIFFERENT METHODS

Nonzero Coefficients w54 w56 w126 w127 w128

LLMC [23] 0.4949 0.4949 -0.0591 0.1284 -0.0591
SMCE [27] 0.4989 0.4989 0 0 0

LCR 0.4976 0.4976 4.63e-8 0.0047 4.63e-8

In Fig. 1(b), we show two trefoil-knots in R3. As in [27],
we generate the synthetic data, which are sampled from two
trefoil-knots embedded in R100 and corrupted with small
Gaussian noise. Note that the data points are sampled such
that among the 2 nearest neighbors of 1% of the data points
there are points from the other submanifold. Also, among the
3 and 5 nearest neighbors of 9% and 18% of the data points,
respectively, there are points from the other submanifold. For
such points, the nearest neighbors-based methods [19], [20],
[23] will connect the nearby points in the other submanifold
and assign large coefficients to the connection. We compare
LCR with SMCE [27] and LLMC [23], and report the ex-
perimental results in Table II. As can be read that, SMCE
yields perfect clustering accuracy when λ is larger.2 While
LLMC and LCR cannot yield the perfect clustering, LLMC
and LCR when combined with the pruning step lead to perfect
clustering. This suggests the effectiveness of the pruning step.

TABLE II
COMPARISONS ON CLUSTERING ACCURACY (%) OF DIFFERENT METHODS

AS A FUNCTION OF PARAMETER λ OR k.

λ 0.1 1 10 50 70 100 200
SMCE [27] 84.5 94.0 100.0 100.0 100.0 100.0 100.0

k 2 3 4 5 6 8 10
LLMC [23] 87.0 89.5 86.5 88.5 87.5 65.0 60.0
LLMC + d̂ 87.0 91.5 100.0 100.0 94.5 80.0 63.5

LCR 87.0 85.5 86.5 85.5 87.5 62.0 61.0
LCR + d̂ 87.0 88.5 100.0 100.0 100.0 93.0 90.5

B. Experiments on Real World Datasets
To verify the effectiveness of our approach, we conduct

experiments on datasets COIL-20, COIL-100 and UMIST.
The Columbia Object Image Library (COIL). COIL-20 is a
database of gray-scale images of 20 objects (see Fig. 2(a)). The
objects were placed on a motorized turntable against a black
background. The turntable was rotated through 360 degrees
to vary object pose with respect to a fix camera. Images of
the objects were taken at pose intervals of 5 degrees. This
corresponds to 72 images per object. COIL-100 contains 100
objects with 72 images per object. In experiments, we resize
each image into 32×32.
The Face Database UMIST. The UMIST Face Database
consists of 1012 images of 20 individuals (mixed
race/gender/apparence) (see Fig. 2(b)). The images are
taken under a range of continuous pose changes. We resize
each image into 32×32.

2Unfortunately, setting λ larger cannot lead to additional performance
improvements on COIL20, COIL100 and UMIST.

(a) COIL-20 (b) UMIST

Fig. 2. Illustration of Samples in Datasets.

TABLE III
CLUSTERING ACCURACY (%) ON COIL-20, COIL-100 AND UMIST

Method COIL-20 COIL-100 UMIST
k-means [35] 64.64 46.46 53.60

SSC [6] 85.14 55.00 58.50
EnSC-ORGEN [9] 74.25 69.24 68.30

SSC-OMP [10] 54.10 33.61 50.79
Kernel SSC [7] 75.35 52.82 57.20

LLMC [23] 92.57 77.78 72.43
SMCE [27] 92.29 80.75 68.77

LCR 85.00 76.36 72.13
LLMC + d̂ 80.56 80.06 51.68
LCR + d̂ 100.00 91.51 76.98

Experimental Results. To evaluate the performance of LCR,
we select the following seven baseline algorithms, including
k-means [35], SSC [6], EnSC-ORGEN [9], SSC-OMP [10],
Kernel SSC [7], LLMC [23], and SMCE [27]. The hyper-
parameters in each algorithm are tuned to gain the best
performance. To prune the minor coefficients in LCR, we
estimate the intrinsic dimension of data set using local PCA.
To be specific, we find the eigenvalues of the local covariance
matrix within a local neighborhood of 20 nearest neighbors,
and take an average of the eigenvalues on the entire dataset.
We show the averaged eigenvalue bars in Fig. 3. The big
eigenvalues gap between the first leading eigenvalue and the
second eigenvalue indicates the intrinsic dimension d̂ as 1,
which can also be calculated by preserving 95% energy of the
eigenvalues. The estimated intrinsic dimension is consistent
with the generation process of the dataset.

Experimental results are reported in Table III. As could be
read, SMCE and LLMC are the two well-performed baselines,
which even excel the performance of LCR. Nevertheless, if the
pruning approach is used, LCR+d̂ yields the best clustering
accuracy on all the three datasets. Note that, while LLMC also
yields remarkable performance on COIL-20 and UMIST, using
the pruning strategy in LLMC degenerate the performance.
In addition, while SMCE [27] also yields very competitive
results, there is a need to tune the tradeoff parameter λ, which
does not exist in LCR. Compare to tuning the parameter λ,
estimating the intrinsic dimension with local PCA is more
practical in a clustering task.
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Fig. 3. The eigenvalues computed by local PCA with 20 nearest neighbors.



To evaluate the clustering accuracy with different lo-
cal neighborhood parameter k, we conduct experiments on
datasets COIL-20 and COIL-100 and display the clustering
accuracy curves as a function of the parameter k in Fig. 4.
As can be observed, while LLMC and LCR yield comparable
clustering accuracy in small k, the performance degenerates
dramatically when using a larger k. When the pruning strategy
is used, the clustering accuracy of LCR is improved signifi-
cantly if k is not too small; whereas LLMC does not.

2 4 6 8 10 12 14 16 18 20
60

65

70

75

80

85

90

95

100

C
lu
st
er
in
g
A
cc
u
ra
cy

(%
)

parameter k

 

 

LCR + d̂

LCR

LLMC + d̂

LLMC

(a) COIL-20

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

50

55

60

65

70

75

80

85

90

C
lu
st
er
in
g
A
cc
u
ra
cy

(%
)

parameter k

 

 

LCR + d̂

LCR

LLMC + d̂

LLMC

(b) COIL-100

Fig. 4. Comparison on clustering accuracy with/without pruning

IV. CONCLUSION

We have proposed an efficient method for manifold clus-
tering, called Local Convex Representation. By building its
connection to the `1 minimization based local affine sparse
representation with an extra nonnegativity constraint, we have
revealed that for some data points the nonzero coefficients
of LCR are guaranteed to detect the data points lying on
the same submanifold under mild conditions. Moreover, we
have validated by experiments on synthetic data and real
world datasets that the clustering accuracy of LCR can be
significantly improved by keeping only the dominating d̂+ 1
coefficients, where d̂ is the intrinsic dimension of the subman-
ifold estimated via local PCA.
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